Hour Exam 1

Useful numbers and formulas you may need are given at the end.
You must turn in your answer by 11:55 to get full credit.

1. Consider the RNA sequence AGUCCAG_CCGUCGUA, with a base missing.
a. (2) What is the probability, $\mathrm{P}(\mathrm{U})$, that uracil occurs in the known part of the sequence?

Solution: \mathbf{U} occurs 3 times in the sequence of 15 bases, so the probability is $3 / 15$
b. (2) What is the probability, $\mathrm{P}(\mathrm{G})$, that guanine occurs in the known part of the sequence?

Solution: G occurs 4 times in the sequence of 15 bases, so the probability is $4 / 15$
c. (2) What is the probability that whenever there is a U , there is a G before it? That is what is $P(\mathrm{G} \mid \mathrm{U})$ in the known part of the sequence?
Solution: Of the 3 times \mathbf{U} occurs, a G is before it all 3 times, so the probability $\mathbf{P}(\mathbf{G} \mid \mathbf{U})$ is $\mathbf{1}$ d. $(2+1+1)$ Use Bayes' formula to find $\mathrm{P}(\mathrm{U} \mid \mathrm{G})$, the probability that the next base is U given that the previous base was G . What odds do you give of U being the missing base? Is this a reasonable guess for the missing base?
Solution: $\mathbb{P}(\mathbf{U} \mid \mathbf{G})=\mathbb{P}(\mathbf{G} \mid \mathbf{U}) \mathbb{P}(\mathbf{U}) / \mathbb{P}(\mathbf{G})=(1)(3 / 15) /(4 / 15)=0.75$. Yes, this is a reasonable guess for the missing base: likely tpo be there, but not 100% because there was a G where we don't know if it had a U after it or not.
2. (10 pts) Let's calculate some probabilities of being in a classically forbidden region.
a. (2) Sketch the potential energy of a spring (${ }^{1} / 2 k x^{2}$) and of a box; don't forget the ' x ' and ' E ' axes on each plot.

Solution:

b. (2+2) Draw the two lowest energy levels and sketch the two lowest energy wavefunction into each plot, paying attention to the 'forbidden regions'.

Solution: see above

c. (1) For the box with infinitely high walls, what is the probability of being in the forbidden region?
[Hint: no calculation needed if your sketch is correctly drawn)
Solution: 0 (no classically forbidden region because the energy outside the box is ∞)
d. (3) The $n=1$ state of a spring with wavefunction $\Psi(x) \approx 2.422 x e^{-3 x^{2} / 2}$ has one of its classically forbidden regions between $x=1$ and infinity. Calculate the probability of being in the "forbidden region" at $x>1$. [Hint: remember probability density $P(x)=|\Psi(x)|^{2}$, and $\left|\mathrm{e}^{\mathrm{a}}\right|^{2}=\mathrm{e}^{2 \mathrm{a}}$.]

Solution:

$$
\begin{gathered}
\Psi(x) \approx 2.422 x e^{-\frac{3 x^{2}}{2}} \\
P_{\text {forbidden }}=\int_{x_{\max }=1}^{\infty} d x|\Psi(x)|^{2}=(2.422)^{2} \int_{1}^{\infty} d x x^{2} e^{-3 x^{2}}=5.85(0.0094) \\
P_{\text {forbidden }} \approx \mathbf{0 . 0 5 5}
\end{gathered}
$$

$\Rightarrow \approx 5.5 \%$ chance to find the particle in the forbidden region at $x>1$.
3. (10 pts) $\mathrm{H}_{2}{ }^{+}$is the simplest molecule, with two protons and one electron.
a. (4) Write down the Schrödinger equation for the electron with the nuclei at a fixed distance R from one another. [Hint: Consider the kinetic energy terms of the electron and the Coulomb energy terms for each pair of particles.]

Solution:

$$
\left\{-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial y^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}-\frac{Z_{A} e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r_{e A}}-\frac{Z_{B} e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r_{e B}}+\frac{Z_{A} Z_{B} e^{2}}{4 \pi \epsilon_{0}} \frac{1}{R}\right\} \Psi=E \Psi
$$

b. (2) Both + or -1 s wavefunctions solve the Schrödinger equation on hydrogen atoms ": A " and " B ": squaring these wavefunction gives the same probability. Draw the bonding wavefunction on both the nuclei of $\mathrm{H}_{2}{ }^{+}$when the nuclei are far apart and when they are close together.
c. (2) Repeat (b) for the antibonding wavefunction: protons close together and far apart.

Solutions:

d. (1+1) If a $\mathrm{H}_{2}{ }^{+}$molecule is excited from the ground state bonding orbital to excited state antibonding orbital, what happens to the molecule and why?

Solution:

When an $\mathrm{H}_{2}{ }^{+}$molecule is excited, this leads to the decomposition of $\mathrm{H}_{2}{ }^{+}$molecule into H atom and H^{+}ion. The reason is that the electron is excited to the anti-bonding orbital, which has very little probability for the electron being between the nuclei, and nuclear repulsion raises the energy of the antibonding (excited) state.
4. (10 pts) β-Carotene is a conjugated molecules with 22 conjugated carbon atoms. The conjugated length of β-Carotene is $20 \AA$.

a. (2) How many π electrons does this molecule have in the conjugated system?

Solution: 22π electrons
b. (2) For the "electrons in a box" model, what are the quantum numbers n and $n+1$ of the two energy levels that give the lowest-frequency transition of β-carotene?
Solution: Electrons are filled in pairs, so 22 electrons fill the box up to $n=11$ (HOMO). The LUMO is therefore $\mathrm{n}=12$. The 11 to 12 transition will be the lowest frequency transition.
c. (3+1) Treat β-carotene like a box, and calculate the frequency of light absorbed by the transition in b., and also calculate the wavelength absorbed.
Solution: Use the particle in a box energy formula and Planck's law to get

$$
\Delta E=h^{2} * \frac{\left(12^{2}-11^{2}\right)}{8 m L^{2}}=h v
$$

Here, $m \approx 9.11 * 10^{-31} \mathrm{~kg}$ is the electron mass, $\mathrm{L} \approx 20 \AA=2 \times 10^{-9} \mathrm{~m}$ is the length of β Carotene, and $\mathrm{h} \approx 6.62 \times 10^{-34} \mathrm{~J} * \mathrm{~s}$ is Planck's constant. Thus, solving for $v, v=5.22 * 10^{14} \mathrm{~Hz}$. Using $\nu \lambda=\mathrm{c}$, we then obtain $\lambda \approx 5.74 * 10^{-7} \mathrm{~m}=574 \mathrm{~nm}$ by using the speed of light $\mathrm{c} \approx 3 \times 10^{8}$ m / s.
d. (1+1) What color does β-Carotene absorb best? What "complementary" color is β-Carotene itself? Solution: using the color strip in the "Useful Information," 574 nm is yellow light being absorbed; the complementary color reflected or transmitted is purple. Note that this is not quite right for the color of carotene, which experimentally absorbs around 500 nm ; the box model would have to be replaced by a full quantum calculation of the HOMO and LUMO energies. There are however purple carotenoids!

Useful information:
1 atomic mass unit $=1.66 \times 10^{-27} \mathrm{~kg}$; mass of electron $m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
Planck's constant $h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$; note that $\hbar=h / 2 \pi$ is about 6.28 times smaller.
$1 \AA=0.1 \mathrm{~nm}=100 \mathrm{pm} ; c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
$\partial / \partial \mathrm{x} \mathrm{e}^{a x}=a \mathrm{e}^{a x}$
$\int \mathrm{e}^{-x / a} d x=-a \mathrm{e}^{-x / a}$
$(1 / a) \cdot \int x \mathrm{e}^{-x / a} d x=-(a+x) \mathrm{e}^{-x / a}$

Chem 440
Spring 2024
$\int_{1}^{\infty} x^{2} \cdot e^{-3 x^{2}} d x=0.0094$
$\lim _{x \rightarrow \infty} x e^{-x / a}=0$ and $\lim _{x \rightarrow \infty} x e^{-b x^{2}}=0$ for a or b.
Bayes' Rule: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$

Color and wavelength, and complementary color wheel

