Hour Exam 1

50 minutes - Useful numbers and formulas you may need are given at the end.
You must turn in your answer by 10:55 to get full credit.

1. (10 pts.) The momentum along the x -axis is given by $\hat{p}=\frac{\hbar}{i} \frac{\partial}{\partial x}$.
a. (2+2) Show that $x \hat{p} \neq \hat{p} x$, by applying $x \hat{p}$ to the function $f(x)$, and then applying $\hat{p} x$ to the function $f(x)$, to show that the two results are different.
b. (3) An eigenfunction of the momentum is a function such that $\hat{p} \psi(x)=\lambda \psi(x)$, where λ is the eigenvalue of the momentum. Show that the function $\psi(x)=e^{i p_{0} x / \hbar}$, where p_{0} is a number, is an eigenfunction of the momentum operator.
c. (1) What is the momentum eigenvalue λ in part b . equal to?
d. $(1+1)$ Is $g(x)=e^{-i p_{0} x / \hbar}$ also an eigenfunction of the momentum operator? Why or why not?
2. (10 pts.) Consider a two-electron molecule, with electron \#1 satisfying $H_{1} \psi\left(x_{1}\right)=E_{1} \psi\left(x_{1}\right)$ and electron \#2 satisfying $H_{2} \phi\left(x_{2}\right)=E_{2} \phi\left(x_{2}\right)$.
a. (4) Show that the wavefunction for the two-electron system is of the form $\psi\left(x_{1}\right) \phi\left(x_{2}\right)$. That is, show that $\psi\left(x_{1}\right) \phi\left(x_{2}\right)$ is an eigenfunction of the combined Hamiltonian $H_{1}+H_{2}$.
b. (1) What is the total energy of the system?

Suppose electron \#1 is in the σ molecular orbital $\psi \sim \sigma\left(x_{1}\right)$ and electron \#2 is in the σ^{*} molecular orbital $\phi \sim \sigma^{*}\left(x_{2}\right)$.
c. (2) Write down the total wavefunction of this system that satisfies the Pauli exclusion principle?
d. (3) Show that this wavefunction satisfies postulate 4: $\psi_{\text {fermion }}(1,2)=-\psi_{\text {fermion }}(2,1)$.
3. (10 pts.) Spectroscopy has detected likely signs of life on Procyon c, an exoplanet that revolves around an 11 light year-distant F5 class star that emits bluer light than the sun. The lifeforms with vision may have developed a molecule ' X ' with 10 conjugated carbon atoms, vs. the 12 conjugated carbon atoms of retinal.
a. $(1+1)$ How many π electrons does this molecule have in the conjugated system? If retinal has a conjugated length $L=15 \AA$, what is the conjugated length of molecule ' X '?
b. (2) For the "electrons in a box" model, what are the quantum numbers n and $n+1$ of the two energy levels that give the lowest-frequency transition of molecule ' X '?
c. $(3+1)$ Treat molecule ' X ' like a box, and calculate the frequency of light absorbed by the transition in b., and also calculate the wavelength absorbed.
d. (1+1) What color does the lifeform's visual sensitivity peak at? What is the color of molecule ' X ' itself?
4. (10 pts .) In class we studied the different effects that heat and light have on hexadiene by examining the conjugated π molecular orbitals. Here, we examine the reaction between two ethene molecules to form cyclobutane. (ethene is $\mathrm{C}_{2} \mathrm{H}_{4}$ or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ or simply $=$)
a. $(1+1+1)$ How many π electrons does ethene have? Draw the energy level diagram for the π electrons of ethene molecule with the HOMO and LUMO orbitals next to their energy level. Fill the electrons into the lowest energy orbital(s) with correct spin.
b. $(1+1+1)$ Now imagine the two adjacent ethene molecules aligned like $==$ as a π-conjugated system and draw the energy levels and molecular orbitals for this 4-electron system, filling in the electrons correctly and labeling the HOMO and LUMO. Here, the first two p orbitals you draw belong to ethene molecule \#1, while the second two p orbitals belong to ethene molecule \#2.
c. $(1+1)$ Would this reaction proceed naturally through heating, yes or no? Justify your answer in 1 sentence? [Hint: for simplicity, do it for the aligned molecules; the result is the same for other orientations.]
d. $(1+1)$ Would this reaction proceed using light to induce a 1-electron transition, yes or no?

Justify your answer in 1 sentence? [Hint: same as in c.]

Useful information:

Average $A=\Sigma P_{\mathrm{i}} A_{\mathrm{i}}$ or $A=\int d x P(x) A(x) ; \ln \left(x_{2}\right)-\ln \left(x_{I}\right)=\ln \left(x_{2} / x_{1}\right) ; \ln \left(x^{a}\right)=a \ln (x)$.
$\partial\left(\mathrm{e}^{i k x}\right) / \partial \mathrm{x}=i k \mathrm{e}^{i k x} ; \mathrm{e}^{\mathrm{i} k \mathrm{x}}=\cos (k x)+\mathrm{i} \sin (k x)=$ Real part + Imaginary part.
wavenumber $\left(\mathrm{cm}^{-1}\right)=\frac{10^{7}}{\lambda(n m)}=\frac{v(\mathrm{~Hz})}{100 c\left(\frac{m}{s}\right)}$ relates number of cycles per cm to wavelength or frequency
$\mathrm{N}!=\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots 3 \cdot 2 \cdot 1 \quad c=2.99792458 \cdot 10^{8} \mathrm{~m} / \mathrm{s} ;$
1 atomic mass unit $\approx 1.66 \times 10^{-27} \mathrm{~kg}$; mass of electron $m_{\mathrm{e}} \approx 9.109 \times 10^{-31} \mathrm{~kg}$
$k_{B} \approx 1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$; Planck's constant $h \approx 6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} ; \hbar=h / 2 \pi$.
Avogadro's number $N_{A}=6.02214076 \cdot 10^{23}$; gas constant $R \approx 8.31 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$
Conversions: $1 \AA=0.1 \mathrm{~nm}=100 \mathrm{pm} ; 1 \mathrm{ps}=10^{-12} \mathrm{~s} ; 1 \mathrm{fs}=10^{-15} \mathrm{~s}$
Uncertainty principles: $\Delta x \Delta p=\hbar / 2 ; \Delta E \Delta t=\hbar / 2$;
Color, wavelength, and complementary color wheel:

