Hour Exam 2

Useful numbers and formulas you may need are given at the end. You must turn in your answer by 10:55 to get full credit.

1. (10 pts) Consider a bag containing three 1-dollar coins and six quarters. You are allowed to pull out exactly one coin in every draw.

a. (1+1) If randomly chosen, **what is** the probability of pulling a single quarter? **Of pulling a** single 1-dollar coin?

b. (2) What is the probability of pulling a quarter, a 1-dollar coin, and then another quarter in that order in three draws?

c. (2+1) What is the average value *E* of a single draw? Is it possible to pull out that amount in one draw?

d. (2+1) Let's say we add a half dollar to the bag. What is the new average value of a single draw? Is it possible to pull out that amount in a single draw?

2. (10 pts) Consider an isolated system made up of two subsystems A and B divided by a moveable wall that <u>also</u> allows heat, but not particles, to pass through $(dn_A=dn_B=0)$. We allow the subsystems to come to equilibrium:

a. (1+1) Can work be exchanged between A and B? Is entropy extensive (additive)?

b. (1+1) Based on part a., what is the change in total entropy dS_{tot} in terms of dS_A and dS_B ? In equilibrium $dS_{tot} = 0$, therefore give the simple relation between dS_A and dS_B when A and B are in equilibrium.

c. (1+1+1) Write down the general formula for dE when dn=0 [see 'Useful Information']. Solve for dS, and write down the two formulas for dS_A and dS_B , putting subscripts "A" or "B" on <u>all</u> variables to distinguish the two subsystems.

d. (1+1+1) **Insert** the two formulas from part c. into part b. at equilibrium. Use conservation of total energy $dE = dE_A + dE_B = 0$ and total volume $dV = dV_A + dV_B = 0$ to eliminate dE_B and dV_B from your formula. **Regroup** your formula to show that in equilibrium, since dE_A and dV_A are independent changes, therefore $T_A = T_B$ and $P_A = P_B$.

3. (10 pts) *E* is a function of *S*, *V*, and *n*. Therefore $dE = TdS - PdV + \mu dn$. *F* is a function of *T*, *V*, and *n*. Let's figure out what *dF* is equal to.

a. (2+1) Based on the above, what thermodynamic variable is $\frac{\partial E}{\partial s}$ equal to? Is it intensive or extensive?

Chem 440 Practice exam

b. (2) If *F* is the intercept of *E* as a function of slope $\frac{\partial E}{\partial S}$, write *F* in terms of *E* and simple extensive and intensive variables using your result in a. [Hint: you could look at 'Useful Information'.]

c. (2) Write down the total differential $dF = \cdots$ of your expression for F in part b., keeping in mind that in general the total differential of a product of two variables, AB, equals d(AB) = AdB + BdA.

d. (2+1) Substitute *dE* by $TdS - PdV + \mu dn$ into your result from c. and cancel terms to write down the formula for *dF*. What is the derivative $\frac{\partial F}{\partial T}$ equal to in terms of a simple variable?

4. (10 pts) Let us calculate the partition function Z(T) for folding of a peptide with N=10 amino acids. Each amino acid has $W_{AA}=3$ microstates.

a. (2+1) How many total microstates W_{tot} does the whole peptide with N amino acids have? [Hint: W is a multiplicative quantity, not extensive.] Give a **formula** in terms of N and W_{AA} , and **numerical** value.

b. (1) The folded state has $W_F=1$ microstate. All the other microstates make up the unfolded macrostate. Given your answer in a., what is W_U , the number of microstates in the unfolded state?

c. (2) Assume the folded state has energy $E_F=0$, and the unfolded state has energy $E_U=29$ kJ/mole. Write down the canonical partition function Z(T) for the peptide in terms of W_F , W_U , E_U , and T.

d. (1+1+1+1) Calculate the partition function at T=298 K. Is the peptide mostly folded or mostly unfolded? Calculate the partition function at T=350 K. Is the peptide mostly folded or mostly unfolded? [Hint: the partition function Z is the number of microstates accessible to the system at temperature T, and the folded state accounts for 1 microstate.]

Useful information:

Constants: 1 atomic mass unit $\approx 1.66 \times 10^{-27}$ kg; mass of electron $m_e \approx 9.109 \times 10^{-31}$ kg; Planck's constant $h \approx 6.626 \times 10^{-34}$ Js; $\hbar = h/2\pi$; Avogadro's number $N_A = 6.02214076 \cdot 10^{23}$; $k_B \approx 1.38 \cdot 10^{-23}$ J/K; gas constant $R \approx 8.31$ J/mole/K, or $R \approx -0.08205$ L \cdot atm \cdot mol⁻¹ \cdot K⁻¹; Faraday's number ≈ 96485 Coulombs/mole. $c \approx 3.10^8$ m/s; $e \approx 1.6.10^{-19}$ Coulombs; Avogadro's number $N_A = 6.02214076 \cdot 10^{23}$; gas constant $R \approx 8.31$ J/mole/K = $k_B N_A$;

Partition functions and thermodynamic potentials: $\rho_j = 1/W_j$ (constant energy);

 $\rho_{\rm j} = W_{\rm j} \exp(-E_{\rm j}/RT)/Z; Z = \exp(-F/RT) = \Sigma W_{\rm j} \exp(-E_{\rm j}/RT)$ (constant temperature); average $A = \Sigma \rho_{\rm j} A_{\rm j}$;

 $dE = TdS - PdV + \mu dn$, and this can be solved for dS, dV or dn.

 $E(S,V,\ldots)$; $F(T,V,\ldots)=E-TS$; $H(S,P,\ldots)=E+PV$; $G(T,P,\ldots)=H-TS$ all contain the same information.

Conversions: 1 Å = 0.1 nm = 100 pm = 10^{-10} m; wavenumber (cm⁻¹) = $\frac{10^7}{\lambda (nm)}$

Math: $N! = N(N-1)(N-2) = 3 \cdot 2 \cdot 1 \approx N^N - N \ln N; 0! = 1$

Energy levels: $E(n) = -Ry/n^2$, where $Ry= 2.1798741 \cdot 10^{-18}$ J (H atom); $E_n = hv(n+1/2)$ (spring)

Color and wavelength:

