Hour Exam 2

Useful numbers and formulas you may need are given at the end.

You must turn in your answer by 10:55 to get full credit.

1. (10 pts) Consider a bag containing three 1 -dollar coins and six quarters. You are allowed to pull out exactly one coin in every draw.
a. (1+1) If randomly chosen, what is the probability of pulling a single quarter? Of pulling a single 1-dollar coin?
b. (2) What is the probability of pulling a quarter, a 1-dollar coin, and then another quarter in that order in three draws?
c. $(2+1)$ What is the average value E of a single draw? Is it possible to pull out that amount in one draw?
d. $(2+1)$ Let's say we add a half dollar to the bag. What is the new average value of a single draw? Is it possible to pull out that amount in a single draw?
2. (10 pts) Consider an isolated system made up of two subsystems A and B divided by a moveable wall that also allows energy (i.e. heat), but not particles to pass through $\left(d n_{A}=d n_{B}=0\right)$. We allow the subsystems to come to equilibrium:

a. (1+1) Can work be exchanged between A and B? Is entropy extensive (additive)?
b. (1+1) Based on part a., what is the change in total entropy $d S_{\text {tot }}$ in terms of $d S_{A}$ and $d S_{B}$? At equilibrium $d S_{t o t}=0$, therefore give the simple relation between $d S_{A}$ and $d S_{B}$ when A and B are in equilibrium.
c. $(1+1+1)$ Write down the general formula for $d E$ when $d n=0$ [see 'Useful Information']. Solve for $d S$, and write down the two formulas for $d S_{A}$ and $d S_{B}$, putting subscripts "A" or "B" on all variables to distinguish the two subsystems.
d. $(1+1+1)$ Insert the two formulas from part c . into part b. at equilibrium. Use conservation of total energy $d E=d E_{A}+d E_{B}=0$ and total volume $d V=d V_{A}+d V_{B}=0$ to eliminate $d E_{B}$ and $d V_{B}$ from your formula. Regroup your formula to show that in equilibrium, since $d E_{A}$ and $d V_{A}$ are independent changes, therefore $T_{A}=T_{B}$ and $P_{A}=P_{B}$.
3. (10 pts) E is a function of S, V, and n. Therefore $d E=T d S-P d V+\mu d n$. F is a function of T, V, and n. Let's figure out what $d F$ is equal to.
a. (2+1) Based on the above, what thermodynamic variable is $\frac{\partial E}{\partial S}$ equal to? Is it intensive or extensive?
b. (2) If F is the intercept of E as a function of slope $\frac{\partial E}{\partial S}$, write F in terms of E and simple extensive and intensive variables using your result in a. [Hint: you could look at 'Useful Information'.]
c. (2) Write down the total differential $d F=\cdots$ of your expression for F in part b., keeping in mind that in general the total differential of a product of two variables, $A B$, equals $d(A B)=A d B+B d A$.
d. (2+1) Substitute $d E$ by $T d S-P d V+\mu d n$ into your result from c . and cancel terms to write down the formula for $d F$. What is the derivative $\frac{\partial F}{\partial T}$ equal to in terms of a simple variable?
4. (10 pts) Let us calculate the partition function $Z(T)$ for folding of a peptide with $N=10$ amino acids. Each amino acid has $W_{\mathrm{AA}}=3$ microstates.
a. (2+1) How many total microstates $W_{\text {tot }}$ does the whole peptide with N amino acids have? [Hint: W is a multiplicative quantity, not extensive.] Give a formula in terms of N and $W_{\text {AA }}$, and numerical value.
b. (1) The folded state has $W_{\mathrm{F}}=1$ microstate. All the other microstates make up the unfolded macrostate. Given your answer in a., what is W_{U}, the number of microstates in the unfolded state?
c. (2) Assume the folded state has energy $E_{\mathrm{F}}=0$, and the unfolded state has energy $E_{\mathrm{U}}=25 \mathrm{~kJ} / \mathrm{mole}$. Write down the canonical partition function $Z(T)$ for the peptide in terms of $W_{\mathrm{F}}, W_{\mathrm{U}}, E_{\mathrm{U}}$, and T.
d. $(1+1+1+1)$ Calculate the partition function at $T=298 \mathrm{~K}$. Is the peptide mostly folded or mostly unfolded? Calculate the partition function at $T=350 \mathrm{~K}$. Is the peptide mostly folded or mostly unfolded? [Hint: the partition function Z is the number of microstates accessible to the system at temperature T, and the folded state accounts for 1 microstate.]

Useful information:

Constants: 1 atomic mass unit $\approx 1.66 \times 10^{-27} \mathrm{~kg}$; mass of electron $m_{\mathrm{e}} \approx 9.109 \times 10^{-31} \mathrm{~kg}$; Planck's constant $h \approx 6.626 \times 10^{-34} \mathrm{~J}$ s; $\hbar=h / 2 \pi$; Avogadro's number $N_{A}=6.02214076 \cdot 10^{23} ; k_{B} \approx 1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$; gas constant $R \approx 8.31 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$, or $R \approx-0.08205 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$; Faraday's number ≈ 96485 Coulombs $/ \mathrm{mole}$. $c \approx 3.10^{8} \mathrm{~m} / \mathrm{s} ; \mathrm{e} \approx 1.6 .10^{-19}$ Coulombs; Avogadro's number $N_{A}=6.02214076 \cdot 10^{23} ;$ gas constant $R \approx 8.31$ $\mathrm{J} / \mathrm{mole} / \mathrm{K}=k_{B} N_{A}$;

Partition functions and thermodynamic potentials: $\rho_{\mathrm{j}}=1 / W_{\mathrm{j}}$ (constant energy);
$\rho_{\mathrm{j}}=W_{\mathrm{j}} \exp \left(-E_{\mathrm{j}} / R T\right) / Z ; Z=\exp (-F / R T)=\Sigma W_{\mathrm{j}} \exp \left(-E_{\mathrm{j}} / R T\right)$ (constant temperature); average $A=\Sigma \rho_{\mathrm{j}} A_{\mathrm{j}} ;$
$d E=T d S-P d V+\mu d n$, and this can be solved for $d S, d V$ or $d n$.
$E(S, V, \ldots) ; F(T, V, \ldots)=E-T S ; H(S, P, \ldots)=E+P V ; G(T, P, \ldots)=H-T S$ all contain the same information.
Conversions: $1 \AA=0.1 \mathrm{~nm}=100 \mathrm{pm}=10^{-10} \mathrm{~m}$; wavenumber $\left(\mathrm{cm}^{-1}\right)=\frac{10^{7}}{\lambda(n m)}$
Math: $N!=N(N-1)(N-2) \cdots 3 \cdot 1 \approx N^{N}-N \ln N ; 0!=1$
Energy levels: $E(n)=-R y / n^{2}$, where $R y=2.1798741 \cdot 10^{-18} \mathrm{~J}\left(\mathrm{H}\right.$ atom); $E_{\mathrm{n}}=h v(n+1 / 2)$ (spring)

Color and wavelength:

Solutions:

1. (10 pts) Consider a bag containing three 1 -dollar coins and six quarters. You are allowed to pull exactly one coin in every draw.
a. (1+1) If randomly chosen, what is the probability of pulling a quarter? Of pulling a 1 -dollar coin? Solution: There are $3+6=9$ total coins. $\mathrm{P}($ one quarter $)=\frac{6}{9}=\frac{2}{3}$; and $\mathrm{P}($ one 1-dollar $)=\frac{3}{9}=\frac{1}{3}$.
b. (2) What is the probability of pulling a quarter, a 1-dollar coin, and then another quarter in that order in three draws?
$\mathrm{P}($ quarter, 1 -dollar, then quarter $)=\frac{6}{9} * \frac{3}{8} * \frac{5}{7}=0.18=18 \%$. Note that the denominator decreases by one in every successive draw because there is one less coin in the bag.
c. $(2+1)$ What is the average value E of a single draw? Is it possible to pull out that amount in one draw?

Solution: $E(X)=\sum X_{i} P_{i}=\left(1 * \frac{3}{9}\right)+\left(\frac{1}{4} * \frac{6}{9}\right)=0.50$
It is not possible to draw 50 cents from the bag in a single attempt. This goes to show that the average value does not necessarily correlate to any single value within a sample.
d. $(2+1)$ Let's say we add a half dollar to the bag. What is the new average value of a single draw? Is it possible to pull out that amount in a single draw?
Solution: $E(X)=\sum X_{i} P_{i}=\left(1 * \frac{3}{10}\right)+\left(\frac{1}{4} * \frac{6}{10}\right)+\left(\frac{1}{2} * \frac{1}{10}\right)=0.3+0.15+0.05=0.50$
Yes, in this case you can pull the half-dollar to get 50 cents, the average value of the sample.
2. (10 pts) Consider an isolated system made up of two subsystems A and B divided by a moveable wall that also allows energy (i.e. heat), but not particles to pass through ($d n_{A}=d n_{B}=0$). We allow the sub-systems to come to equilibrium.
a. $(1+1)$ Can work be exchanged between \mathbf{A} and \mathbf{B} ? Is entropy extensive (additive)?

Solution: Yes, work can also be exchanged between the subsystems because the wall is moveable wall. (The same is true for heat, as stated in the problem.) Yes, entropy is extensive = additive.
b. (1+1) Based on part a., what is the change in total entropy $d S_{\text {tot }}$ in terms of $d S_{A}$ and $d S_{B}$? At equilibrium $d S_{\text {tot }}=0$, therefore give the simple relation between $d S_{A}$ and $d S_{B}$ when A and B are in equilibrium.
Solution: $d S_{\text {tot }}=d S_{A}+d S_{B}=0$ $d S_{A}=-d S_{B}$
c. $(1+1+1)$ Write down the general formula for $d E$ when $d n=0$. Solve for dS , and write down the two formulas for $d S_{A}$ and $d S_{B}$, putting subscripts " A " or " B " on all variables to distinguish the two sub subsystems.
Solution: In general $d E=T d S-P d V+\mu d n$, so $d E=T d S-P d V$ when $d n=0$.
Solving for $d S$ for each subsystem, $d S_{A}=\frac{1}{T_{A}} d E_{A}+\frac{P_{A}}{T_{A}} d V_{A}$ and $d S_{B}=\frac{1}{T_{B}} d E_{B}+\frac{P_{B}}{T_{B}} d V_{B}$
d. $(1+1+1)$ Insert the two formulas from c . into b . at equilibrium. Use conservation of total energy $d E=$ $d E_{A}+d E_{B}=0$ and total volume $d V=d V_{A}+d V_{B}=0$ to eliminate $d E_{B}$ and $d V_{B}$ from your formula. Regroup
your formula to show that in equilibrium, since $d E_{A}$ and $d V_{A}$ are independent changes, therefore $T_{A}=T_{B}$ and $P_{A}=P_{B}$.
Solution: $d S_{A}=-d S_{B} \Rightarrow \frac{1}{T_{A}} d E_{A}+\frac{P_{A}}{T_{A}} d V_{A}=-\frac{1}{T_{B}} d E_{B}-\frac{P_{B}}{T_{B}} d V_{B}$.
Since $d E_{A}=-d E_{B}=0$ and $d V_{A}=-d V_{B}=>=\frac{1}{T_{A}} d E_{A}+\frac{P_{A}}{T_{A}} d V_{A}=\frac{1}{T_{B}} d E_{A}-\frac{P_{B}}{T_{B}} d V_{A}$.
Collecting terms, $=\left(\frac{1}{T_{A}}-\frac{1}{T_{B}}\right) d E_{A}=-\left(\frac{P_{A}}{T_{A}}-\frac{P_{B}}{T_{B}}\right) d V_{A}$. Since $d E_{A}$ an $\mathrm{d} d V_{A}$ are independent changes, this
can only be true if $\left(\frac{1}{T_{A}}-\frac{1}{T_{B}}\right)=0$ and thus $T_{A}=T_{B}$, and also $=-\left(\frac{P_{A}}{T_{A}}-\frac{P_{B}}{T_{B}}\right)=0$ and thus $P_{A}=P_{B}$
3. (10 pts) E is a function of S, V, and n. Therefore $d E=T d S-P d V+\mu d n . F$ is a function of T, V, and n. Let's figure out what $d F$ is equal to.
a. (1+1) Based on the above, what thermodynamic variable is $\frac{\partial E}{\partial S}$ equal to? Is it intensive or extensive? Solution: $\frac{\partial E}{\partial S}=T$. Intensive
b. (2) If F is the intercept of E as a function of slope $\frac{\partial E}{\partial S}$, write F in terms of E and simple extensive and intensive variables using your result in a. [Hint: you could look at 'Useful Information'.]
Solution: $F=E-T S$
c. (2) Write down the total differential $d F=\cdots$ of your expression for F in b ., keeping in mind that in general the total differential of a product of two variables, $A B$, equals $d(A B)=A d B+B d A$.
Solution: $d F=d E-T d S-S d T$
d. (2+1) Substitute $d E$ by $d S-P d V+\mu d n$ into your result from c . and cancel terms to write down the formula for $d F$. What is the derivative $\frac{\partial F}{\partial T}$ equal to in terms of a simple variable?
Solution: $d F=(T d S-P d V+\mu d n)-T d S-S d T=-S d T-P d V+\mu d n$.

$$
\text { Since } \mathrm{d} F \sim-S d T, \partial F / \partial T=-S
$$

4. (10 pts) Let us calculate the partition function $Z(T)$ for folding for a peptide with $N=10$ amino acids. Each amino acid has $W_{\mathrm{AA}}=3$ microstates.
a. $(2+1)$ How many total microstates $W_{\text {tot }}$ does the whole peptide with N amino acids have? [Hint: W is a multiplicative quantity, not extensive.] Give a formula in terms of N and W_{AA}, and numerical value.
Solution: $\mathrm{W}_{\text {tot }}=W_{A A}{ }^{\mathrm{N}}=3^{10}=59049$.
b. (1) The folded state has $W_{\mathrm{F}}=1$ microstate. All the other microstates make up the unfolded macrostate. Given your answer in a., what is W_{U}, the number of microstates in the unfolded state?
Solution: $\mathrm{W}_{\mathrm{U}}=\mathrm{W}_{\text {tot }}-1=59048$
c. (2) Assume the folded state has energy $E_{\mathrm{F}}=0$, and the unfolded state has energy $E_{\mathrm{U}}=25 \mathrm{~kJ} / \mathrm{mole}$. Write down the canonical partition function $Z(T)$ for the peptide in terms of $W_{\mathrm{F}}, W_{\mathrm{U}}, E_{\mathrm{U}}$, and T.
Solution: $Z(T)=W_{F}+W_{U} e^{-\frac{E_{U}}{R T}}=1+59048 e^{-\frac{25 \mathrm{~kJ} / \mathrm{mole}}{0.00831 * T(K)}}$
d. $(1+1+1+1)$ Calculate the partition function at $T=298 \mathrm{~K}$. Is the peptide mostly folded or mostly unfolded? Calculate the partition function at $T=350 \mathrm{~K}$. Is the peptide mostly folded or mostly unfolded? [Hint: the

Chem 440
Fall 2023
partition function Z is the number of microstates accessible to the system at temperature T , and the folded state has 1 microstate.]
Solution:
$Z(298)=1+59048 e^{-\frac{25 \mathrm{~kJ} / \mathrm{mole}}{0.00831 * 298}}=3.437$. Mostly unfolded because 2.437 (on average) of the unfolded microstates are populated, so there is almost 3 times as much unfolded peptide as there is folded peptide.
$Z(350)=1+59048 e^{-\frac{25 \mathrm{~kJ} / \mathrm{mole}}{0.00831 * 350}}=11.92$. Even more unfolded because now 10.92 (on average) of the unfolded microstates are populated, so there is almost 11 times as much unfolded peptide as there is folded peptide.

