Hour Exam 2

Useful numbers and formulas you may need are given at the end. You must turn in your answer by 10:55 to get full credit.

- 1. (10 pts) Consider a bag containing three 1-dollar coins and six quarters. You are allowed to pull out exactly one coin in every draw.
- a. (1+1) If randomly chosen, **what is** the probability of pulling a single quarter? **Of pulling a** single 1-dollar coin?
- b. (2) **What is** the probability of pulling a quarter, a 1-dollar coin, and then another quarter <u>in that order</u> in three draws?
- c. (2+1) What is the average value E of a single draw? Is it possible to pull out that amount in one draw?
- d. (2+1) Let's say we add a half dollar to the bag. What is the new average value of a single draw? Is it possible to pull out that amount in a single draw?
- 2. (10 pts) Consider an isolated system made up of two subsystems A and B divided by a <u>moveable</u> wall that also allows energy (i.e. heat), but not particles to pass through $(dn_A=dn_B=0)$. We allow the subsystems to come to equilibrium:

- a. (1+1) Can work be exchanged between A and B? Is entropy extensive (additive)?
- b. (1+1) Based on part a., **what is** the change in total entropy dS_{tot} in terms of dS_A and dS_B ? At equilibrium $dS_{tot} = 0$, therefore **give** the simple relation between dS_A and dS_B when A and B are in equilibrium.
- c. (1+1+1) Write down the general formula for dE when dn=0 [see 'Useful Information']. Solve for dS, and write down the two formulas for dS_A and dS_B , putting subscripts "A" or "B" on <u>all</u> variables to distinguish the two subsystems.
- d. (1+1+1) **Insert** the two formulas from part c. into part b. at equilibrium. **Use** conservation of total energy $dE = dE_A + dE_B = 0$ and total volume $dV = dV_A + dV_B = 0$ to eliminate dE_B and dV_B from your formula. **Regroup** your formula to show that in equilibrium, since dE_A and dV_A are independent changes, therefore $T_A = T_B$ and $P_A = P_B$.
- 3. (10 pts) E is a function of S, V, and n. Therefore $dE = TdS PdV + \mu dn$. F is a function of T, V, and n. Let's figure out what dF is equal to.
- a. (2+1) Based on the above, **what** thermodynamic variable is $\frac{\partial E}{\partial S}$ equal to? **Is it** intensive or extensive?

- b. (2) If F is the intercept of E as a function of slope $\frac{\partial E}{\partial S}$, write F in terms of E and simple extensive and intensive variables using your result in a. [Hint: you could look at 'Useful Information'.]
- c. (2) Write down the total differential $dF = \cdots$ of your expression for F in part b., keeping in mind that in general the total differential of a product of two variables, AB, equals d(AB) = AdB + BdA.
- d. (2+1) Substitute dE by $TdS PdV + \mu dn$ into your result from c. and cancel terms to **write down** the formula for dF. What is the derivative $\frac{\partial F}{\partial T}$ equal to in terms of a simple variable?
- 4. (10 pts) Let us calculate the partition function Z(T) for folding of a peptide with N=10 amino acids. Each amino acid has $W_{AA}=3$ microstates.
- a. (2+1) How many total microstates W_{tot} does the whole peptide with N amino acids have? [Hint: W is a multiplicative quantity, not extensive.] Give a **formula** in terms of N and W_{AA} , and **numerical** value.
- b. (1) The folded state has $W_F=1$ microstate. All the other microstates make up the unfolded macrostate. Given your answer in a., what is W_U , the number of microstates in the unfolded state?
- c. (2) Assume the folded state has energy E_F =0, and the unfolded state has energy E_U =25 kJ/mole. Write **down** the canonical partition function Z(T) for the peptide in terms of W_F , W_U , E_U , and T.
- d. (1+1+1+1) Calculate the partition function at T=298 K. Is the peptide mostly folded or mostly unfolded? Calculate the partition function at T=350 K. Is the peptide mostly folded or mostly unfolded? [Hint: the partition function Z is the number of microstates accessible to the system at temperature T, and the folded state accounts for 1 microstate.]

Useful information:

Constants: 1 atomic mass unit $\approx 1.66 \times 10^{-27} \text{ kg}$; mass of electron $m_e \approx 9.109 \times 10^{-31} \text{ kg}$; Planck's constant $h \approx 6.626 \times 10^{-34} \text{ J/s}$; $\hbar = h/2\pi$; Avogadro's number $N_A = 6.02214076 \cdot 10^{23}$; $k_B \approx 1.38 \cdot 10^{-23} \text{ J/K}$; gas constant $R \approx 8.31 \text{ J/mole/K}$, or $R \approx -0.08205 \text{ L} \cdot atm \cdot mol^{-1} \cdot K^{-1}$; Faraday's number $\approx 96485 \text{ Coulombs/mole}$. $c \approx 3 \cdot 10^8 \text{ m/s}$; $e \approx 1.6.10^{-19} \text{ Coulombs}$; Avogadro's number $N_A = 6.02214076 \cdot 10^{23}$; gas constant $R \approx 8.31 \text{ J/mole/K} = k_B \cdot N_A$;

Partition functions and thermodynamic potentials: $\rho_i = 1/W_i$ (constant energy);

 $\rho_{\rm j} = W_{\rm j} \exp(-E_{\rm j}/RT)/Z$; $Z = \exp(-F/RT) = \sum W_{\rm j} \exp(-E_{\rm j}/RT)$ (constant temperature); average $A = \sum \rho_{\rm j} A_{\rm j}$;

 $dE = TdS - PdV + \mu dn$, and this can be solved for dS, dV or dn.

E(S,V,...); F(T,V,...)=E-TS; H(S,P,...)=E+PV; G(T,P,...)=H-TS all contain the same information.

Conversions: 1 Å = 0.1 nm = 100 pm = 10^{-10} m; wavenumber (cm⁻¹) = $\frac{10^7}{\lambda (nm)}$

Math: $N! = N(N-1)(N-2) \cdots 3\cdot 2\cdot 1 \approx N^N - N \ln N; 0! = 1$

Energy levels: $E(n) = -Rv/n^2$, where $Rv = 2.1798741 \cdot 10^{-18}$ J (H atom); $E_n = hv(n+1/2)$ (spring)

Color and wavelength:

Solutions:

- 1. (10 pts) Consider a bag containing three 1-dollar coins and six quarters. You are allowed to pull exactly one coin in every draw.
- a. (1+1) If randomly chosen, what is the probability of pulling a quarter? Of pulling a 1-dollar coin? Solution: There are 3+6=9 total coins. P(one quarter) $=\frac{6}{9}=\frac{2}{3}$; and P(one 1-dollar) $=\frac{3}{9}=\frac{1}{3}$.
- b. (2) **What is** the probability of pulling a quarter, a 1-dollar coin, and then another quarter <u>in that order</u> in three draws?

P(quarter, 1-dollar, then quarter) = $\frac{6}{9} * \frac{3}{8} * \frac{5}{7} = 0.18 = 18\%$. Note that the denominator decreases by one in every successive draw because there is one less coin in the bag.

c. (2+1) What is the average value *E* of a single draw? Is it possible to pull out that amount in one draw? Solution: $E(X) = \sum X_i P_i = \left(1 * \frac{3}{9}\right) + \left(\frac{1}{4} * \frac{6}{9}\right) = 0.50$

It is not possible to draw 50 cents from the bag in a single attempt. This goes to show that the average value does not necessarily correlate to any single value within a sample.

d. (2+1) Let's say we add a half dollar to the bag. **What is** the new average value of a single draw? Is it possible to pull out that amount in a single draw?

Solution: $E(X) = \sum X_i P_i = \left(1 * \frac{3}{10}\right) + \left(\frac{1}{4} * \frac{6}{10}\right) + \left(\frac{1}{2} * \frac{1}{10}\right) = 0.3 + 0.15 + 0.05 = 0.50$ Yes, in this case you can pull the half-dollar to get 50 cents, the average value of the sample.

- 2. (10 pts) Consider an isolated system made up of two subsystems A and B divided by a <u>moveable</u> wall that also allows energy (i.e. heat), but not particles to pass through $(dn_A=dn_B=0)$. We allow the sub-systems to come to equilibrium.
- a. (1+1) Can work be exchanged between **A** and **B**? Is entropy extensive (additive)? Solution: Yes, work can also be exchanged between the subsystems because the wall is moveable wall. (The same is true for heat, as stated in the problem.) Yes, entropy is extensive = additive.
- b. (1+1) Based on part a., **what is** the change in total entropy dS_{tot} in terms of dS_A and dS_B ? At equilibrium $dS_{tot} = 0$, therefore **give** the simple relation between dS_A and dS_B when A and B are in equilibrium.

Solution:
$$dS_{tot} = dS_A + dS_B = 0$$

 $dS_A = -dS_B$

c. (1+1+1) Write down the general formula for dE when dn=0. Solve for dS, and write down the two formulas for dS_A and dS_B , putting subscripts "A" or "B" on all variables to distinguish the two sub subsystems.

Solution: In general $dE = TdS - PdV + \mu dn$, so dE = TdS - PdV when dn = 0. Solving for dS for each subsystem, $dS_A = \frac{1}{T_A} dE_A + \frac{P_A}{T_A} dV_A$ and $dS_B = \frac{1}{T_B} dE_B + \frac{P_B}{T_B} dV_B$

d. (1+1+1) **Insert** the two formulas from c. into b. at equilibrium. **Use** conservation of total energy $dE = dE_A + dE_B = 0$ and total volume $dV = dV_A + dV_B = 0$ to eliminate dE_B and dV_B from your formula. **Regroup**

your formula to show that in equilibrium, since dE_A and dV_A are independent changes, therefore $T_A = T_B$ and $P_A = P_B$.

Solution:
$$dS_A = -dS_B \Rightarrow \frac{1}{T_A} dE_A + \frac{P_A}{T_A} dV_A = -\frac{1}{T_B} dE_B - \frac{P_B}{T_B} dV_B$$
.
Since $dE_A = -dE_B = 0$ and $dV_A = -dV_B \Rightarrow = \frac{1}{T_A} dE_A + \frac{P_A}{T_A} dV_A = \frac{1}{T_B} dE_A - \frac{P_B}{T_B} dV_A$.
Collecting terms, $= \left(\frac{1}{T_A} - \frac{1}{T_B}\right) dE_A = -\left(\frac{P_A}{T_A} - \frac{P_B}{T_B}\right) dV_A$. Since dE_A and dV_A are independent changes, this can only be true if $\left(\frac{1}{T_A} - \frac{1}{T_B}\right) = 0$ and thus $T_A = T_B$, and also $= -\left(\frac{P_A}{T_A} - \frac{P_B}{T_B}\right) = 0$ and thus $P_A = P_B$

- 3. (10 pts) E is a function of S, V, and n. Therefore $dE = TdS PdV + \mu dn$. F is a function of T, V, and n. Let's figure out what dF is equal to.
- a. (1+1) Based on the above, **what** thermodynamic variable is $\frac{\partial E}{\partial S}$ equal to? **Is it** intensive or extensive? Solution: $\frac{\partial E}{\partial S} = T$. Intensive
- b. (2) If F is the intercept of E as a function of slope $\frac{\partial E}{\partial S}$, write F in terms of E and simple extensive and intensive variables using your result in a. [Hint: you could look at 'Useful Information'.] Solution: F = E TS
- c. (2) Write down the total differential $dF = \cdots$ of your expression for F in b., keeping in mind that in general the total differential of a product of two variables, AB, equals d(AB) = AdB + BdA. Solution: dF = dE TdS SdT
- d. (2+1) Substitute dE by $dS PdV + \mu dn$ into your result from c. and cancel terms to **write down** the formula for dF. What is the derivative $\frac{\partial F}{\partial T}$ equal to in terms of a simple variable?

Solution:
$$dF = (TdS - PdV + \mu dn) - TdS - SdT = -SdT - PdV + \mu dn$$
.
Since $dF \sim -SdT$, $\partial F/\partial T = -S$

- 4. (10 pts) Let us calculate the partition function Z(T) for folding for a peptide with N=10 amino acids. Each amino acid has $W_{AA}=3$ microstates.
- a. (2+1) How many total microstates W_{tot} does the whole peptide with N amino acids have? [Hint: W is a multiplicative quantity, not extensive.] Give a **formula** in terms of N and W_{AA} , and **numerical** value. Solution: $W_{\text{tot}} = W_{AA}{}^{N} = 3^{10} = 59049$.
- b. (1) The folded state has W_F =1 microstate. All the other microstates make up the unfolded macrostate. Given your answer in a., **what is** W_U , the number of microstates in the unfolded state? Solution: $W_U = W_{tot} 1 = 59048$
- c. (2) Assume the folded state has energy E_F =0, and the unfolded state has energy E_U =25 kJ/mole. Write **down** the canonical partition function Z(T) for the peptide in terms of W_F , W_U , E_U , and T.

Solution:
$$Z(T) = W_F + W_U e^{-\frac{E_U}{RT}} = 1 + 59048 e^{-\frac{1}{25} \frac{25 \text{ kJ/mole}}{0.00831*T(K)}}$$

d. (1+1+1+1) Calculate the partition function at T=298 K. Is the peptide mostly folded or mostly unfolded? Calculate the partition function at T=350 K. Is the peptide mostly folded or mostly unfolded? [Hint: the

Chem 440 Fall 2023

partition function Z is the number of microstates accessible to the system at temperature T, and the folded state has 1 microstate.]

Solution:

 $Z(298) = 1 + 59048e^{-\frac{25 \text{ kJ/mole}}{0.00831*298}} = 3.437$. Mostly unfolded because 2.437 (on average) of the unfolded microstates are populated, so there is almost 3 times as much unfolded peptide as there is folded peptide.

 $Z(350) = 1 + 59048e^{-\frac{25 \text{ kJ/mole}}{0.00831*350}} = 11.92$. Even more unfolded because now 10.92 (on average) of the unfolded microstates are populated, so there is almost 11 times as much unfolded peptide as there is folded peptide.