Course Schedule, Exams, Reading and Homework

-The course website is at https://gruebele-group.chemistry.illinois.edu/courses/chem-440

-Dates: Check below for dates of all lectures, exams, reviews.

-Lecture: MWF at 11-11:50 AM in 1000 Lincoln Hall.

-Reading: No textbook to buy, full course notes are at the web site, covering O = overview, Q = quantum, S = stat mech & thermo, T = transport and kinetics. For example, "Q1 p1-3" = read Quantum notes Chapter 1, pages 1 through 3. Please read the assigned notes before lecture.

-OH: Gruebele office hours. Generally on Fridays at noon in-person in A220 CLSL.

-Homework: All homework is listed in the course notes. Solutions are posted already on the Chem 440 website. Do *all* homework, but only the green problems must be turned in for grading and credit. Assignments from the previous week are due on Mondays at 5 PM. (e.g. if two green problems are assigned on various days in week 1, both are due on Monday of week 2, but you should also do the remaining problem(s) from the assigned reading, they can be on the exams).

-Hour exam and final exam questions The questions are modified homework problems, in-class exercises, and thought experiments, listed in the course notes so *keep up with them every week*!

Date	Lecture	Reading	OH	Homework
1/17	The goals of pchem;	O1 p1-3		Do O1.1
L1	averages, derivative models			
1/19	Randomness, Bayesian	O1 p3-5	noon	Do O1.2, O1.3
L2	inference			
1/22	Why logarithms, complex	O1 p 6-7		Do O1.4
L3	numbers			
1/24	Why go 'quantum'? Music	Q1 p1-3		Do Q1.1
L4	and quantum mechanics			Play with MD demo
1/26	The Postulates of quantum	Q1 p4-5	noon	Do Q1.2
L5	mechanics			
1/29	Some consequences of the	Q1 p6-7		Do Q1.3
L6	postulates			
2/31	Of molecules and springs	Q2 p8-10		Do Q2.1, Q2.2
L7				Play with <u>QM demo</u>
2/2	Weird properties of	Q2 p10-12	noon	Do Q2.3, Q 2.4
L8	quantum springs			
2/5	Other models interesting for	Q3 p13-15		Do Q3.1
L9	chemistry: 'The Box'			
2/7	The simplest atom	Q3 p16-17		Do Q3.2
L10				
2/9 (TA)	The simplest molecule	Q4 p18-19		Do Q4.1
L11				IQmol documentation
2/12	The forbidden region and	Q4 p19-20		Do Q4.2
L12	quantum interference:			
	bonding and antibonding			
2/14	Multi-electron molecules	Q4 p21-22		Do Q4.3
L13				
2/16	Potential surfaces and	Q5 p23-24	noon	Do Q5.1
L14	absorbing/emitting light			
2/19	Can spectroscopy detect	Q5 p25-26		Do Q5.2, Q5.3
L15	alien life?			
2/21	How do chemical reactions	Q5 p27-28		Do Q5.4
	go over barriers			

L16				
2/23	From mechanics to	S1 p1-3	noon	Do S1.1
L17	statistical mechanics	1		
2/26	The Postulates of statistical	S2 p4-5		Do S2.1
L18	mechanics	1		
2/28	The microcanonical	S2 p6-7		Do S2.2
L19	partition function	-		
3/1	Entropy and deriving the	S2 p8-9	noon	Do S2.3
L20	'laws' of thermodynamics			
3/4	What is temperature?	S3 p10-12	noon	Do S3.1, S3.2
L21				
3/6	TA review Session in class			-
Review				
3/8	Hour Exam #1, covers L1	-16,		
Exam	In-class, open annotated tex	xtbook and notes. Loo	cation: 10	00 Lincoln Hall
3/18	Thermodynamic	S3 p12-14		Do S3.3, S3.4
L22	potentials E, F, G and H			
3/20	Heat flow, heat capacity	S3 p14-15		Do S3.5, S3.6, S3.7, S3.8
L23	and thermo calculations			
3/22	Reactions at constant	S4 p16-18	noon	Do S4.1
L24	temperature			
3/25 (TA)	Folding proteins with stat	S4 p19-20		Do S4.2
L25	mech			
3/27	Solving problems with	S4 p21-22		Do S4.3, S4.4
L26	the partition function			
3/29	Chemical equilibrium	S5 p23-24	noon	Do S5.1, S5.2, S5.3
L27				D 05.4
4/1	Mass action law	85 p25-26		Do \$5.4
L28	Coloulating K from first	05 07 09		D 05.5
4/3	Calculating K_{eq} from first	55 p27-28		Do 55.5
L29	TA review Session in class			
4/J Doviouv	TA leview Session in class			-
	Solar Folinse in Illinois			Honors Project only
4/10	Hour Evon #7 anyors I 1	7_26	<u> </u>	
Fram	Inclass open annotated te	vtbook and notes. I or	pation 10	00 Lincoln Hall
<u>1/17</u>	Moving molecules	S6 n29_20	noon	
I 30	Brownian motion	50 p27-50		D0 50.1
4/15	Moving molecules: drift	\$6 n30-32		Do \$6.2
L31	and flux	50 p50-52		20 50.2
4/17	Transport postulates &	T1 p1-2	1	Do T1.1. T1.2
L32	Boltzmann factor	·····		
4/19	Deriving transport: Fick's.	T2 5-6	noon	Do T2.1. T2.2
L33	Faraday's and Ohm's laws			
4/22	Nernst equation, Osmosis	T2 7-9	1	Do T2.3, T2.4, T2.5
L34	and the 'Master Table'			-, ,
4/24	Integrated flux and Le	T3 10-11		Do T3.1
L35	Châtelier's Principle			
	•	•	•	÷

4/26	No lecture on Friday!						
4/29	Arrhenius and activated rate	T3 12-14		Do T3.2, T3.3			
L36	theory						
5/1	In-class review with	-		Turn in final homework set			
	Gruebele			by May 1.			
Final Exam: 8:00-11:00 a.m., Thursday, May 9, covers all material							
Location: 1000 Lincoln Hall							